Journal of Novel Applied Sciences

Available online at www.jnasci.org ©2014 JNAS Journal-2014-3-12/1410-1412 ISSN 2322-5149 ©2014 JNAS

Every Subgroup is Locally Subnormal

Selami Ercan

Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik Eğitimi Anabilim Dali

Corresponding author: Selami Ercan

ABSTRACT: In this article we study every subgroups is locally subnormal. We prove that if G be a torsion-

free group in $\mathscr{P}_2 \cap \mathscr{P}_n$, for all $1 \le n \in \Box$ and assume that for every homomorphic image \overline{G} of G has a non-trivial abelian normal subgroup, then G is soluble. We also prove that if G be a hyperabelian torsion-free

group in $\mathscr{V}_{2,n}$, then G is nilpotent group.

Keywords: locally subnormal, hyperabelian, soluble, Engel group.

INTRODUCTION

Subnormal Subgroups:

A group H of the group G is said to be subnormal if H is a term of a finite series of G; if there exists $d \in \Box$ and series of subgroups, such that

 $H = H_d \triangleleft H_{d-1} \triangleleft \ldots \triangleleft H_0 = G$

If $H \triangleleft \triangleleft G$ then the defect of H in G is the shortest lenght of such a series : it will be denoted by d(H,G). We shall say that a subgroup H of G is n-subnormal if $H \triangleleft \triangleleft G$ and d(H,G)≤n. We denote by \mathscr{N}_1 the class of all groups which every subgroup H of G is subnormal.

Normalize Condition:

A group G said to satisfy the normalizer condition if

 $H \neq N_G(H)$ for all proper subgroups H of G. We denote by $^{\&}$ the class of all groups satisfying normalizer condition.

Locally Subnormality

A class which in intermediate between \mathscr{P}_1 and \mathscr{P} class of groups in which every subgroup is locally subnormal; where a subgroup H of a group G is called locally subnormal if

 $H \triangleleft \triangleleft \langle H, X \rangle$ for all finite $X \subset G$. The class we denoted by \mathscr{P}_2 .

Isolator:

Let H be a subgroup of a group G. the isolator of H in G is the set

 $I_G(H) = \left\{ x \in G : x^n \in H, \text{ for some } 1 \le n \in \Box \right\}$

Let us denote by $^{\bigotimes_n}$ the class groups in which every soluble subgroups is soluble of derived length n,for each $1 \le n \in \square$

 ${}^{\mathscr{O}_{2,n}}$ class of groups in which every subgroup is locally subnormal; where a subgroup H of a group G is called locally subnormal if $H \triangleleft \triangleleft G$ for all finite $X \subseteq G$ and subnormal indices bounded n,where $1 \leq n \in \square$.

Mainresults

Lemma 1.

Let G be a group in \mathscr{D}_2 . Then G is locally nilpotent.

Proof.

Let F be finitely generated subgroup of G. By hypothesis, for all $x \in F$, $\langle x \rangle$ is subnormal subgroup of F. F is a nilpotent group by 12.2.8(1). Thus G is locally nilpotent.

Lemma 2.

Let G be a hyperabelian torsion-free group in $\mathscr{P}_2 \cap \mathscr{P}_n$, for all $1 \le n \in \mathbb{D}$. Then G is soluble.

Proof.

Suppose that G is not soluble. Since G ishyperabelian, then there exists non-soluble

normal subgroup L of G such that $L = \bigcup_{i \in \mathbb{Z}} A_i$, where A_i is soluble normal subgroups of G, for all $i \in \mathbb{Q}$ by (5)Lemma (3). But by hypothesis, for all $i \in \mathbb{Q}$, A_i is soluble of derived length n. Thus L is soluble. This is a contradiction.

Theorem A .

Let G be a torsion-free group in $\mathscr{P}_2 \cap \mathscr{P}_n$, for all $1 \le n \in \mathbb{C}$ and assume that for every homomorphic image G of G has a non-trivial abelian normal subgroup. Then G is soluble.

Proof.

Suppose that G is not soluble. By hypothesis G has an abelian normal subgroup A of G. $I_G(A)$ is an abelian normal subgroup of G by (1)Lemma (ii),(v)(3). If $G=I_G(A)$, then G is soluble by (1)(v) (3). Assume that $G \neq I_G(A) = A_1$

 ${}^{G_{A_{1}}}$ is torsion-free. By hypothesis, ${}^{G_{A_{1}}}$ has an abelian group ${}^{B_{1}}A_{1}$. Also ${}^{B_{1}}$ is soluble. If $I_{G}(B_{1}) = G$, then G is soluble. Assume that $A_{2} = I_{G}(B_{1}) \neq G$. Then ${}^{G_{A_{2}}}$ is torsion-free. Now assume that we have subgroups $A_{\lambda} \neq G$, $A_{\lambda} \triangleleft G$ and ${}^{G_{A_{\lambda}}}$ is torsion-free, α is ordinal number, for all $\lambda \leq \alpha$, $\alpha > 1$. If α is limit ordinal, $A_{\alpha} = \bigcup_{\lambda \leq \alpha} A_{\lambda}$

If α is not limit ordinal, there exists $\alpha - 1$ such that $\int_{\alpha - 1}^{\alpha} \beta d_{\alpha - 1}$ is torsion-free. Similar to the definition of $\int_{\alpha - 1}^{\alpha} \beta d_{\alpha - 1}$ is defined in $\int_{\alpha - 1}^{\alpha} \beta d_{\alpha - 1}$ is torsion-free. If it is continued in such a way that there exists a ordinal number β such that $G = A_{\beta}$. $\{A_{\alpha} : \alpha \leq \beta\}$ is hyperabelian series of G. Thus G is soluble by Lemma 2.

Lemma 3.

Let G be a group in \mathscr{D}_2 . Then G is an Engel group.

Proof.

For all $x, y \in G$, by hypothesis $\langle x \rangle \triangleleft \triangleleft \langle x, y \rangle$. Then there exists a n natural numbers such that $[\langle x, y \rangle, n \langle x \rangle] \leq \langle x \rangle$

This implies that

 $\left[y,(n+1)x\right] = 1$

Thus G is Engel group.

Corollary

Let G be a hyperabelian torsion-free group in $\mathscr{P}_{2,n}$. Then G is nilpotent group.

Proof.

G is soluble by Teorem A. For all $x, y \in G$ $\langle x \rangle$ is subnormal in $\langle x, y \rangle$ and $\langle y \rangle$ is subnormal in $\langle x, y \rangle$. Since subnormal indices is n, $[\langle x, y \rangle, n \langle x \rangle] \leq \langle x \rangle$ and $[\langle x, y \rangle, n \langle y \rangle] \leq \langle y \rangle$. This implies that [y, (n+1)x] = 1 and [x, (n+1)y] = 1. Thus G is (n+1)-Engel group. G is nilpotent by Corollary in page 64(2).

REFERENCES

Derek JSR. 1982. A Course in The Theory of Groups, Springer-Verlag.

Derek JSR. 1972. Finiteness conditions and Generalized Soluble Groups, Part 2, Springer-Verlag.

Möhres W. 1989. Torsion freie Gruppen, deren Untergruppen alle subnormal sind, Math. Ann. 284, 245-250.