Journal of Novel Applied Sciences

Available online at [www.jnasci.o](http://www.jnasci./)rg ©2014 JNAS Journal-2014-3-12/1410-1412 ISSN 2322-5149 ©2014 JNAS

Every Subgroup is Locally Subnormal

Selami Ercan

Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik Eğitimi Anabilim Dali

*Corresponding author***:** Selami Ercan

ABSTRACT: In this article we study every subgroups is locally subnormal. We prove that if G be a torsion-

free group in ${}^{\{ \!\!\!\ p \ \!\!\!\}}{}_{2} \cap {}^{\{ \!\!\!\ p \ \!\!\!\}}$, for all $~^{1\leq n\in\Box}~$ and assume that for every homomorphic image \overline{G} of G has a nontrivial abelian normal subgroup, then G is soluble. We also prove that if G be a hyperabelian torsion-free group in ${}^{\not\!{\partial_{2,n}}}$, then G is nilpotent group.

*Keywords***:** locally subnormal,hyperabelian, soluble, Engel group.

INTRODUCTION

Subnormal Subgroups:

A group H of the group G is said to be subnormal if H is a term of a finite series of G; if there exists $\,d\in\Box\,$ and series of subgroups, such that

s of subgroups, such that
 $H\!=\!H_{_{d}}\!\vartriangleleft H_{_{d\!-\!1}}\!\vartriangleleft\!...\!\vartriangleleft\! H_{_{0}}\!=\!G$

If $H\triangleleft\triangleleft G\;$ then the defect of H $\;$ in G $\;$ is the shortest lenght of such a series : it will $\;$ be denoted by d(H,G). We shall saythat a subgroup H of G is n-subnormal if $\,H$ ⊲⊲ G and d(H,G)≤n. We denote by $\,{}^{\,\!\widehat{\!\!\mathcal{M}}}$ the class of all groups which every subgroup H of G is subnormal.

Normalize Condition:

A group G said to satisfy the normalizer condition if

 H \neq $N_G(H)$ for all proper subgroups H of G. We denote by $^{\not\circ}$ the class of all groups satisfying normalizer condition.

Locally Subnormality

A class which in intermediate between $\,{}^{\mathcal{G}_1}\,$ and $\,{}^{\mathcal{G}_2}\,$ class of groups in which every subgroup is locally subnormal; where a subgroup H of a group G is called locally subnormal if

 $H \triangleleft \!\triangleleft \langle H, X \rangle \!\!\!\!\!\rangle$ for all finite $X \mathop{\subset} G$. The class we denoted by ${}^{\textstyle \langle O_2 \rangle}$.

Isolator:

Let H be a subgroup of a group G. the isolator of H in G is the set Fr.

H be a subgroup of a group G. the isolator of Find the algorithm (H) = $\Big\{x \in G$: $x^n \in H$, for some $1 \leq n \in \square$ $\Big\}$ *n* **aror:**
Let H be a subgroup of a group G. the isolator of H ir $I_G(H)$ $=$ $\left\{ x \in G$ $:x^n \in H$, *for some* 1 \leq n \in \Box $\right\}$

Let us denote by ${}^{\not\!\delta\!P_n}$ the class groups in which every soluble subgroups is soluble of derived length n,for each $1 \leq n \in \square$

 $\wp_{2,n}$ class of groups in which every subgroup is locally subnormal; where a subgroup H of a group G is called locally subnormal if $\,H\triangleleft\triangleleft G$ for all finite $\,X\!\subset\!G$ and subnormal indices bounded n,where $\,1\!\leq\! n\!\in\!\mathbb{D} \,$.

Mainresults

Lemma 1.

Let G be $\,$ a group in $\,{}^{\not\!\partial 2}.$ Then G is locally nilpotent.

Proof.

Let F be finitely generated subgroup of G. By hypothesis, for all $\ x\in F$, $\langle x\rangle\,$ is subnormal subgroup of F. F is a nilpotent group by 12.2.8(1). Thus G is locally nilpotent.

Lemma 2.

Let G be a hyperabelian torsion-free group in ${}^{\textstyle \wp_{2}}\cap {}^{\textstyle \wp_n}$, for all $1 {\leq} n {\in} \square$. Then G is soluble.

Proof.

Suppose that G is not soluble. Since G ishyperabelian, then there exists non-soluble

 $L = \bigcup_{i \in I} A_i$
normal subgroup L of G such that , where \overline{A} is soluble normal subgroups of G, for all $\,i\!\in\!\mathbb{Z}\,$ by (5)Lemma (3). But by hypothesis, for all $\,i\in\Box\,$, $\,A\,$ is soluble of derived length n. Thus L is soluble. This is a contradiction.

Theorem A .

Let G be a torsion-free group in ${}^{\textstyle \mathcal{S} 2}\cap {}^{\textstyle \mathcal{S} 2}$ n, for all 1 \leq n \in \Box and assume that for every homomorphic image \overline{G} of G has a non-trivial abelian normal subgroup. Then G is soluble.

Proof.

Suppose that G is not soluble. By hypothesis G has an abelian normal subgroup A of G. $I_G(A)$ is an abelian normal subgroup of G by (1)Lemma (ii),(v)(3). If $\overline{G=I_{G}(A)}$, then G is soluble by (1)(v) (3). Assume that $G \neq I_G(A) = A$

1 $G / _{A_{1}}$ is torsion-free. By hypothesis, $\begin{bmatrix} G / _{A_{1}} \end{bmatrix}$ $G\!\!\left/_{A_{\!1}}\right.$ has an abelian group $\left.\rule{0pt}{12pt}\right.^{B_{\!1}}$ 1 *B* $\stackrel{\scriptstyle\diagup}{A}_{\!\!1}$. Also $\stackrel{\scriptstyle\diagup}{B}_{\!\!1}$ is soluble. If $I_G(B_l)$ = G , then G is soluble. Assume that $A_2 = I_G(B_l) \neq G$. Then $\frac{G}{A_2}$ $G/_{A_2}$ is torsion-free. Now assume that we have subgroups A_{λ} \neq G , A_{λ} \triangleleft G and $G\!/_{A_{\lambda}}$ is torsion-free, α is ordinal number, for all $\,\lambda\!\leq\!\alpha\,$, $\,\alpha$ >1. If $\,\alpha\,$ is limit ordinal, $A_{\alpha} = \bigcup A_{\lambda}$ $\lambda \leq \alpha$.

If α is not limit ordinal,there exists . $\alpha{-}1\;$ such that $\bar{\nearrow}^{A_{\alpha{-}1}}$ $G\!\!\left/_{A_{\alpha-1}}\right.$ is torsion-free. Similar to the definition of 1 *A A* α $\alpha-1$ is defined in $\left(\begin{array}{c} A_{\alpha-1} \\ 1 \end{array} \right)$ $G/_{A_{\alpha-1}}$ and $G/_{A_{\alpha-1}}$ $G\!\big/_{A_{a-1}}$ is torsion-free. If it is continued in such a way that there exists a ordinal number β such that $G=A_{\beta}$ $\{A_{\alpha}:\alpha\leq\beta\}$ is hyperabelian series of G. Thus G is soluble by Lemma 2.

Lemma 3.

Let G be a group in ${}^{\textstyle \mathcal{S}2}.$ Then G is an Engel group.

Proof.

For all $x, y \in G$ _{, by} hypothesis $\langle x \rangle$ $\triangleleft \langle x, y \rangle$. Then there exists a n natural numbers such that $\left[\langle x, y \rangle, n \langle x \rangle\right] \leq \langle x \rangle$

This implies that

 $[y, (n+1)x] = 1$

Thus G is Engel group.

Corollary

Let G be a hyperabelian torsion-free group in $\stackrel{\{0\}}{=}$. Then G is nilpotent group.

Proof.

G is soluble by Teorem A. For all $x, y \in G$ \ket{x} is subnormal in $\ket{x,y}$ and \ket{y} is subnormal in $\ket{x,y}$. Since subnormal indices is n, \$ $\left[\langle x, y \rangle, n \langle x \rangle\right] \leq \langle x \rangle$ and $\left[\langle x, y \rangle, n \langle y \rangle\right] \leq \langle y \rangle$. This implies that $\left[y, (n+1)x\right] = 1$ and $\left[x, (n+1)y\right] = 1$. Thus G is (n+1)-Engel group. G is nilpotent by Corollary in page 64(2).

REFERENCES

Derek JSR. 1982. A Course in The Theory of Groups,Springer-Verlag. Derek JSR. 1972. Finiteness conditions and Generalized Soluble Groups, Part 2, Springer-Verlag. Möhres W. 1989. Torsion freie Gruppen, deren Untergruppen alle subnormal sind, Math. Ann. 284, 245-250.